Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Across the globe, many animals with disabilities live in zoos and aquariums, yet these institutions often face difficult questions about how to share those stories with the public in a way that raises awareness and minimizes concern about the animals’ well-being. This study explored whether anthropomorphic narrative signage could help visitors form meaningful emotional connections with these animals and, in doing so, encourage greater understanding and support for people with disabilities. Drawing on ideas from contact and transfer theories, we conducted observational research in zoo settings, comparing visitor reactions to no signage, detailed signage, and simple signage. We found that simple signage resulted in fewer negative comments, fewer questions about the animal’s health, and less frustration directed at the organization. In a related survey experiment, participants who saw a photo and brief story about an animal with a disability were more likely to express empathy and hold more positive views toward both animals and people with disabilities. These findings highlight the power of accessible messaging in informal learning spaces to reduce stigma and promote inclusion. The project was led by a diverse, interdisciplinary team of zoo professionals and disability scholars, most of whom bring personal experience with physical or cognitive disabilities to the work.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.more » « less
-
This work explores the process of adapting the segmented attractor network to a lifelong learning setting. Taking inspirations from Hopfield networks and content-addressable memory, the segmented attractor network is a powerful tool for associative memory applications. The network's performance as an associative memory is analyzed using multiple metrics. In addition to the network's general hit rate, its capability to recall unique memories and their frequency is also evaluated with respect to time. Finally, additional learning techniques are implemented to enhance the network's recall capacity in the application of lifelong learning. These learning techniques are based on human cognitive functions such as memory consolidation, prediction, and forgetting.more » « less
-
This work reports a spiking neuromorphic architecture for associative memory simulated in a SPICE environment using recently reported gated-RRAM (resistive random-access memory) devices as synapses alongside neurons based on complementary metal-oxide semiconductors (CMOSs). The network utilizes a Verilog A model to capture the behavior of the gated-RRAM devices within the architecture. The model uses parameters obtained from experimental gated-RRAM devices that were fabricated and tested in this work. Using these devices in tandem with CMOS neuron circuitry, our results indicate that the proposed architecture can learn an association in real time and retrieve the learned association when incomplete information is provided. These results show the promise for gated-RRAM devices for associative memory tasks within a spiking neuromorphic architecture framework.more » « less
-
Abstract Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.more » « less
An official website of the United States government
